Skip to main content

Low Cost and High Quality Stereo FM Radio Receiver

In this project we build CXA1619BS base high performance FM stereo radio receiver using low cost and readily available electronic components. In this design we use CXA1619 as FM radio receiver and BA1320 as FM stereo decoder and LA4108 as power amplifier.


When building the circuit it is highly recommended to build it using the print circuit board (PCB) and take some necessary steps to reduce the effects of external interferences.

In this design we use BA1320 as stereo decode and user can also use BA1330 with this circuit with some less amount of input voltage. (For example: +5V) We use BA1320 for this design because of its low cost, low complexity, higher channel separation and higher availability.

In current design we use LA4108 as power amplifier and it delivers 6W x 2 output power at 8ohm load.

While assembling the circuit make sure to apply suitable heat-sinks to both 7805 voltage regulator and LA4108 power amplifier.

At the testing stages this circuit produces excellent results and fewer amounts of issues in tuning. Anyone can tune this circuit without using signal generator and oscilloscope.

It is recommended to provide 7V to 12V of supply voltage to this circuit and at the testing stages we use 8.0V PSU with this circuit.

Circuit diagram and assembling notes of this circuit is available in google drive.

Comments

Unknown said…
Hi there, can I find some files to reproduce the PCB..?
Ed Ray said…
Why you use la4108, how it sound with lm1875 compare...

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner frequ

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M