Skip to main content

Home produced 700VA isolation transformer

This a quick post regarding homemade 300V - 2.3A isolation transformer. This transformer is a part of my ongoing 300V AC/DC variable power supply project and it’s boxed as a separate unit because of its heavy weight and size.

700VA isolation transformer with enclosure

All the parameters of this transformer are calculated using small Python script which I was written sometimes ago. This script support for step-up, step-down or 1:1 power transformer windings and it can execute on any platform where Python 2.7 (or newer version) is supported.

In isolation transformers separation between primary and secondary windings is an important factor. In this transformer I use multiple layers of 3M Scotch Electrical Insulation tape as primary and secondary winding separator. Standard 50mm PVC electrical insulation tape is used to cover secondary winding of this transformer.

Improper connections or construction of this transformer may leads to fire or lethal electrical shock. Because of that reason, make sure to take all the necessary precautions while constructing, testing or using this transformer. Do not try this project if you don’t know what you are doing!

Comments

Anonymous said…
Looks like factory made. I have made some SMPS transformers, but nothing with that much heft.

Does the python script assume the line frequency? I didn't see an input for that.
Line frequency you need to specify at the run-time.

In 4th question it ask "Primary Input Frequency (Hz): ".

The main assumption I made in this script is magnetizing force value and which is set to 60,000.
Unknown said…
Hi very nice post. Very well built Isolation Transformer.
Thanks for sharing this blog.
Unknown said…
Nice post and thanks for sharing this article.We also manufacturers of Control TransformersControl Transformers Manufacturers

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner frequ

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M