Skip to main content

USB curve tracer for NPN transistors

Curve tracer is an electronic test instrument to analyze the characteristics of transistors and other discrete semiconductors. In this post we construct USB base curve tracer to analyze properties of NPN transistors. This curve tracer is build around Microchip's PIC18F4550 MCU and it use simple Windows based GUI application to plot captured data of a transistor.

In this design PIC18F4550 MCU is used to establish USB connectivity, perform voltage readings and control current/voltage flow into the test subject. To minimize the cost and to make it simple, we use R2R ladder circuit to generate discrete collector-emitter voltage levels for the transistor on test. In each scan session collector-emitter voltage level get increase from 0V to 7.5V in 256 steps. In this design, "tracer" scans the transistor for 7 base current levels which are in between 7µA to 60µA. In viewer application collector-emitter voltage levels are plotted on x-axis and collector current is plotted on y-axis.

Results generated for 2SC945 NPN transistor.

In current firmware, PIC18F4550 communicates with the PC over USB-HID class and because of that this may not need any special device drivers on host terminal. In most of Microsoft Windows operating systems the viewer application may be able to communicate with the device directly. Viewer application bundled in this project package are developed using Microsoft .net framework and it can run immediately on any new PC with minimum amount of prerequisites. Based on our experiences the most recommended operating system for this application is either Windows 7 or Windows 10.

Results generated for 2SD400 NPN transistor.

To get the perfect results we highly recommended to construct this project on PCB. According to our experiences breadboards and veroboards may generate lot of noises and may finally leads to wrong output(s).

This is an open source hardware project and all it's design files, source codes and compiled binaries are available to download at curvetracer.sourceforge.net. All the content of this project are released under the terms of GNU GPL version 3.0.

Comments

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner frequ

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M