Skip to main content

USB Morse Keyer

USB Morse Keyer is a microcontroller-based auto keyer project with following features:
  • USB / straight key / iambic key inputs.
  • Support for both standalone and USB operating modes.
  • 64-character USB typeahead buffer and 6-character Morse key typeahead buffer.
  • Support 5, 10, 15 WPM.
  • 6-page message memory.
  • 1W Audio output.
  • Audio and PTT output interfaces.
  • 32 character display 

Final view of the USB auto keyer.

The USB interface of this unit is designed to work with most of the operating systems. It emulates a virtual serial terminal to transfer keystrokes to the keyer. In most of the operating systems, this interface works without installing any additional device drivers. To submit keystrokes user can use any serial terminal software such as PuTTY, Hyper Terminal, Minicom, etc.

This keyer is designed to work with 7V to 16V DC input voltage. The most recommended working voltage is 9V.

The bottom side of the USB auto keyer.

To reduce the dimension of the PCB this unit is designed with combining both through-hole and surface mount components. To facilitate future upgrades and modifications, the PIC16F886 MCU sticks with the standard 28-pin DIP package.

This is an open-source hardware project. All the design files and firmware source code are available at the project repository at github.com. The project documentation with all the details which including assembly details, firmware uploading, compilation, and usage instructions are available at the project repository's wiki.

Comments

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist...

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner f...

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M...