Skip to main content

Precision Event Logger

This is an easy to construct precision electronic event logger and using this we may be able to measure time differences in two events in range between 0.02 seconds to 6.8 seconds.

This system is mainly design around PIC16F73 microcontroller and 4040 binary ripple counters. The main counter clock (reference counter) is oscillated around 2MHz. Most of the counter related components of this system are based on CMOS family of ICs. If you need more precious lower limit it is recommended to replace all these CMOS family of ICs with TTL equivalents (e.g: 4027 by 74HS73 with slight changes and 4040 by 74HC4040). The clock frequency of the existing counter can also increase up to 6.0MHz.

The counter gets activate and deactivate in positive edge of the input signal. Thanks to the wider operating voltage of the CMOS ICs this counter may be able to handle +5V to +15V of input signal. At the end of the counter session system release total tick count to the RS232 interface and it can receive through any serial terminal software. When applying the inputs it is recommended to maintain minimum of 100ms of interval between each session.

This event logger is useful for physics and electronic experiments, sports events, assembly line monitoring, etc. The input mechanism (e.g: sensor type, logic leveling, etc.) of this system is depends on its application.

The theoretical limit of input interval of this system is wider than above specified values, but we test our prototype in above range and values generated through out-of-range inputs are not guaranteed.

This system is release as an open source hardware project and license under the terms of Creative Commons Attribution 3.0 Unported License. All the project source files, compiled binaries and schematics are available to download at google drive.

Comments

Yes, I am Impressing with your post great thing about Website Design & Web Designing Australia, in today's internet savvy world, having your own website is crucial and adds to the advantage of an organization. It is an ample representation of your company in the virtual world. www.webcaremedia.com

Popular posts from this blog

Enable WebRTC on QtWebEngine for Raspberry Pi 3

WebRTC is a web technology to enable peer to peer communication in real-time. It mainly uses to create video conferencing and chat applications using web browsers. In this post, we describe how to enable this technology in QtWebEngine on Raspberry Pi 3 platform.

QtWebEngine is an embedded browser component which comes with the Qt framework. This component is based on Google Chromium browser and it supports most of the Chromium features including WebRTC. In PC, WebRTC applications run smoothly on QtWebEngine component. But in Raspberry Pi platform situation is different and none of the WebRTC application is work with the QtWebEngine. The only thing which we can see is a black box in an HTML5 video tag area. At the time of writing this problem exists in Qt version 5.6, 5.7 and 5.8.

BMP180 based USB atmospheric pressure monitor

We initially developed this USB atmospheric pressure monitor to study some operating characteristics of Bosch BMP180 sensor. BMP180 is a low-cost sensor for measuring barometric pressure and temperature. According to the datasheet this sensor can use to measure pressure ranging between 300hPa to 1100hPa. This sensor is introduced a couple of years back but still, it is popular due to lower cost and simplicity of its interface.


We did this unit to test the BMP180 sensor more accurately and to study its behaviors. This unit is based on PIC18F2550 microcontroller and the main reason to select this MCU is because of its built-in USB 2.0 interface.


To display sensor calibration data and it’s readings we did small windows application. This application display and plot temperature and pressure readings captured from the BMP180 sensor.

This unit is programmed to work as a USB HID device and no special device driver is required to use this device. We test this unit in Windows 10 environment.

Programmable light controller

The main objective of this project is to design a maintenance free and low-cost light which automatically turns on and off at the predetermined time of the day.

To meet the above requirement I designed this controller using ATmega8 MCU and DS1307 RTC. The driver stage of this light controller is intended to work with commonly available 7W LED modules.


The core component of this programmable light is ATmega8 low power CMOS microcontroller. The main reason to select this microcontroller is it’s lower cost and higher availability. Except for the above two reasons this microcontroller also bundled with a rich set of peripherals which including 23 GPIOs, 3 independent timers, Two-wire serial interface, EEPROM, etc.

Apart from ATmega8 microcontroller, this system uses DS1307 real time clock to maintain system time. Like ATmega8, DS1307 is also a very popular RTC in the market.

This controller is designed to work with a 24V DC power supply. The main reason to select 24V is that most of the…