Skip to main content

DIY Liquid Level Monitor and Automatic Control System

This is an easy to build "liquid level monitor" and "automatic control system". This control system is mainly based on Microchip’s PIC16F630 8bit MCU and few combinatorial logic ICs. This system is specifically design for industries where there is a requirement of maintaining a liquid level at a particular level. The level monitoring stage of this system can capable to sense up-to 8 liquid levels and its trigger point can be programmed at anytime by using its simple 2 button user-interface.

This system is design to work with 12V (or maximum of 25V) DC power source and its sensor system is capable of sensing liquids with resistance of up-to 30k to 35k. To minimize the sensor noise and output instability, the control software is equipped with simple 20-tap FIR like filter system.

The output stage of this system is design to work with 12V to 24V DC relays and it is recommended to use Tyco K10 series or similar kind of relay with this system.

The trigger point of this system is easy to define and it can be done by using S1 and S2 tactile switches. Once user press the S1 (MODE) switch the system enters into programming mode (and that stage trigger point LED starts to get blink), after that user can select desired trigger point by pressing the S2 (SELECT) switch continuously. Once new trigger point is set user can leave the programming mode by press S1 switch again.

The control software of this system is developed using Microchip’s Hi-Tech C compiler and it is available to download with GNU GPL license. This system consist with some sensitive CMOS ICs, so make sure to take necessary precautions while assembling and installing of this system (specially take care about the sensor probes).

As a sensor probes use any suitable low resistive conductor (e.g: copper or aluminum wire) and make sure that it is not reactive with the target liquid type.

This DIY "Liquid Level Monitor and Automatic Control System" is an open hardware project. All its design documents and firmware source codes are available to download at google drive. All the design documents of this system are released under the terms Creative Commons Attribution 3.0 Unported License and firmware source code is release under the terms of GNU General Public License 3.0.


Popular posts from this blog

Enable WebRTC on QtWebEngine for Raspberry Pi 3

WebRTC is a web technology to enable peer to peer communication in real-time. It mainly uses to create video conferencing and chat applications using web browsers. In this post, we describe how to enable this technology in QtWebEngine on Raspberry Pi 3 platform.

QtWebEngine is an embedded browser component which comes with the Qt framework. This component is based on Google Chromium browser and it supports most of the Chromium features including WebRTC. In PC, WebRTC applications run smoothly on QtWebEngine component. But in Raspberry Pi platform situation is different and none of the WebRTC application is work with the QtWebEngine. The only thing which we can see is a black box in an HTML5 video tag area. At the time of writing this problem exists in Qt version 5.6, 5.7 and 5.8.

BMP180 based USB atmospheric pressure monitor

We initially developed this USB atmospheric pressure monitor to study some operating characteristics of Bosch BMP180 sensor. BMP180 is a low-cost sensor for measuring barometric pressure and temperature. According to the datasheet this sensor can use to measure pressure ranging between 300hPa to 1100hPa. This sensor is introduced a couple of years back but still, it is popular due to lower cost and simplicity of its interface.

We did this unit to test the BMP180 sensor more accurately and to study its behaviors. This unit is based on PIC18F2550 microcontroller and the main reason to select this MCU is because of its built-in USB 2.0 interface.

To display sensor calibration data and it’s readings we did small windows application. This application display and plot temperature and pressure readings captured from the BMP180 sensor.

This unit is programmed to work as a USB HID device and no special device driver is required to use this device. We test this unit in Windows 10 environment.

Programmable light controller

The main objective of this project is to design a maintenance free and low-cost light which automatically turns on and off at the predetermined time of the day.

To meet the above requirement I designed this controller using ATmega8 MCU and DS1307 RTC. The driver stage of this light controller is intended to work with commonly available 7W LED modules.

The core component of this programmable light is ATmega8 low power CMOS microcontroller. The main reason to select this microcontroller is it’s lower cost and higher availability. Except for the above two reasons this microcontroller also bundled with a rich set of peripherals which including 23 GPIOs, 3 independent timers, Two-wire serial interface, EEPROM, etc.

Apart from ATmega8 microcontroller, this system uses DS1307 real time clock to maintain system time. Like ATmega8, DS1307 is also a very popular RTC in the market.

This controller is designed to work with a 24V DC power supply. The main reason to select 24V is that most of the…