Skip to main content

Electronically Controlled Nichrome-Wire Cutter

Nichrome-Wire Cutter is an essential tool for model aircraft constructions. We mainly use Nichrome-Wire Cutters to fabricate model aircraft wing assemblies, other than that Nichrom-Wire Cutters are used to cut wax, polystyrene materials and other similar kind of materials.

In this project we construct electronically Controlled Nichrome-Wire Cutter. The main feature of this cutter is its (non mechanical) variable temperature controller. The temperature of the Nichrome-Wire is controlled using TL494 PWM controller. In this design TL494 is oscillated with fixed frequency and only varying factor is its duty cycle, in this given design R2 is used to control the duty cycle of the frequency.

Duty cycle variation with R2 potentiometer

This Nichrome-Wire Cutter requires 8V to 20V – 3A DC power source and 16.5V – 3A is recommended supply for this system. When constructing this system makes sure to solder and connect all the components properly, improper connections may cause oscillations and instabilities in output.

Recommended wire for this system is 1m of 24 S.W.G Nichrome-wire (generally with mix of 60% nickel, 16% chromium, 24% iron) with approximately 6Ω resistance. When constructing this system take special care about this Nichrome-wire. Improper wiring/mounting may cause severe burns, fire and/or permanent damage to the equipments.

The schematic, PCB and all the other materials related to this project are available to download at google drive under the terms of Creative Commons - Attribution 3.0 Unported license.

Comments

Anonymous said…
It would be cool if it measured current and voltage drop across the nichrome wire and was a constant power controller... This way it will account for the cooling of the wire as it melts the foam. Think of it as trying to keep a constant resistance of just the wire, since the wire has a temp. coefficient. Something I've been meaning to try for a while now.
agreed! Like always, feedback systems provide more accuracy and reliability to the system, but in here I omit current and voltage (or altogether resistance) variations of the NiCr wire because it need more components and space :(. In here my plan in is to make some low cost, less complex and customizable (adjustable) NiCr wire base cutter.
Anonymous said…
where can I buy nichrome wire(specific gauge) in Colombo?
NiCr wires are available to purchase at shops which sold scientific instruments and chemicals. (Most of these shops are located at Bankshall Street - Colombo 11)

Popular posts from this blog

Enable WebRTC on QtWebEngine for Raspberry Pi 3

WebRTC is a web technology to enable peer to peer communication in real-time. It mainly uses to create video conferencing and chat applications using web browsers. In this post, we describe how to enable this technology in QtWebEngine on Raspberry Pi 3 platform.

QtWebEngine is an embedded browser component which comes with the Qt framework. This component is based on Google Chromium browser and it supports most of the Chromium features including WebRTC. In PC, WebRTC applications run smoothly on QtWebEngine component. But in Raspberry Pi platform situation is different and none of the WebRTC application is work with the QtWebEngine. The only thing which we can see is a black box in an HTML5 video tag area. At the time of writing this problem exists in Qt version 5.6, 5.7 and 5.8.

BMP180 based USB atmospheric pressure monitor

We initially developed this USB atmospheric pressure monitor to study some operating characteristics of Bosch BMP180 sensor. BMP180 is a low-cost sensor for measuring barometric pressure and temperature. According to the datasheet this sensor can use to measure pressure ranging between 300hPa to 1100hPa. This sensor is introduced a couple of years back but still, it is popular due to lower cost and simplicity of its interface.


We did this unit to test the BMP180 sensor more accurately and to study its behaviors. This unit is based on PIC18F2550 microcontroller and the main reason to select this MCU is because of its built-in USB 2.0 interface.


To display sensor calibration data and it’s readings we did small windows application. This application display and plot temperature and pressure readings captured from the BMP180 sensor.

This unit is programmed to work as a USB HID device and no special device driver is required to use this device. We test this unit in Windows 10 environment.

Programmable light controller

The main objective of this project is to design a maintenance free and low-cost light which automatically turns on and off at the predetermined time of the day.

To meet the above requirement I designed this controller using ATmega8 MCU and DS1307 RTC. The driver stage of this light controller is intended to work with commonly available 7W LED modules.


The core component of this programmable light is ATmega8 low power CMOS microcontroller. The main reason to select this microcontroller is it’s lower cost and higher availability. Except for the above two reasons this microcontroller also bundled with a rich set of peripherals which including 23 GPIOs, 3 independent timers, Two-wire serial interface, EEPROM, etc.

Apart from ATmega8 microcontroller, this system uses DS1307 real time clock to maintain system time. Like ATmega8, DS1307 is also a very popular RTC in the market.

This controller is designed to work with a 24V DC power supply. The main reason to select 24V is that most of the…