Skip to main content

AF signal injector and tracer

Signal injector and the tracer is a very useful device when troubleshooting electronic audio equipment. We decided to build this signal injector by inspiring the article available in June 2016 - Everyday Practical Electronics (EPE) Magazine (Audio Signal Injector and Tracer by John Clarke - Page 22 to 29).

The signal injector design in EPE magazine is simple but we got few issues while constructing that circuit. The main issue is that LMC6482 is not available to buy in the local market. After few months wait we got a couple of ICs from eBay for LKR 600.00. The second issue is its output is not enough to drive most of the loudspeakers. After prototyping EPE design we decided to build similar sort of signal injector and tracer with commonly available ICs and with more powerful power amplifier stage.

For our design, we use the LM358 operational amplifier IC which is commonly available in the local market (for LKR 15 to 20). For the power amplifier, we use LM386 low voltage power amplifier IC (which also costs around LKR 10 - 15). Our design is almost similar to EPE design and the only major addition is LM386 AF power amplifier stage.

3D view of signal injector & tracer PCB.

We build this signal injector and tracer on a single side PCB. Compare with original EPE design this unit consumes more power and it is not designed to drive using a battery. The AM RF demodulator probe (Page 30 - 31 on the same magazine) also works well with this unit.

In supplied PCB we do not include attenuator circuit and in our prototype, we build it using point-to-point wiring method (on top of the selector switch).

Our signal injector and tracer schematics and PCB designs are available to download at google drive. For a more detailed overview please check the June 2016  issue of Everyday Practical Electronics magazine. 

Comments

Popular posts from this blog

Enable WebRTC on QtWebEngine for Raspberry Pi 3

WebRTC is a web technology to enable peer to peer communication in real-time. It mainly uses to create video conferencing and chat applications using web browsers. In this post, we describe how to enable this technology in QtWebEngine on Raspberry Pi 3 platform.

QtWebEngine is an embedded browser component which comes with the Qt framework. This component is based on Google Chromium browser and it supports most of the Chromium features including WebRTC. In PC, WebRTC applications run smoothly on QtWebEngine component. But in Raspberry Pi platform situation is different and none of the WebRTC application is work with the QtWebEngine. The only thing which we can see is a black box in an HTML5 video tag area. At the time of writing this problem exists in Qt version 5.6, 5.7 and 5.8.

BMP180 based USB atmospheric pressure monitor

We initially developed this USB atmospheric pressure monitor to study some operating characteristics of Bosch BMP180 sensor. BMP180 is a low-cost sensor for measuring barometric pressure and temperature. According to the datasheet this sensor can use to measure pressure ranging between 300hPa to 1100hPa. This sensor is introduced a couple of years back but still, it is popular due to lower cost and simplicity of its interface.


We did this unit to test the BMP180 sensor more accurately and to study its behaviors. This unit is based on PIC18F2550 microcontroller and the main reason to select this MCU is because of its built-in USB 2.0 interface.


To display sensor calibration data and it’s readings we did small windows application. This application display and plot temperature and pressure readings captured from the BMP180 sensor.

This unit is programmed to work as a USB HID device and no special device driver is required to use this device. We test this unit in Windows 10 environment.

Programmable light controller

The main objective of this project is to design a maintenance free and low-cost light which automatically turns on and off at the predetermined time of the day.

To meet the above requirement I designed this controller using ATmega8 MCU and DS1307 RTC. The driver stage of this light controller is intended to work with commonly available 7W LED modules.


The core component of this programmable light is ATmega8 low power CMOS microcontroller. The main reason to select this microcontroller is it’s lower cost and higher availability. Except for the above two reasons this microcontroller also bundled with a rich set of peripherals which including 23 GPIOs, 3 independent timers, Two-wire serial interface, EEPROM, etc.

Apart from ATmega8 microcontroller, this system uses DS1307 real time clock to maintain system time. Like ATmega8, DS1307 is also a very popular RTC in the market.

This controller is designed to work with a 24V DC power supply. The main reason to select 24V is that most of the…