Skip to main content

TCS230 based Bluetooth color picker

This is TCS230 based Bluetooth color picker prototype which we build to test the concept. In here the idea is to extract color from any physical object and transfer it to PC / mobile. To test this concept, we use low-cost TCS230 color sensor.

A prototype version of color picker on a tiny breadboard.

TCS230 is programmable color light-to-frequency convert IC. This chip produces square wave output with frequency directly proportional to the light intensity. To drive this sensor and capture its output we used PIC16F628A microcontroller. The processed output is then transferred to the host using the HC-05 Bluetooth SPP (Serial Port Protocol) module.

In PC we wrote small Python script to display captured value and color in a Window.

In this design, we drive the TCS230 sensor with 20% frequency scaling. The entire circuit is built using commonly available modules and components. For the color sensor, we use the 8-pin TCS230 sensor module which is commonly found in eBay and other online electronic component stores. This module comes with 4 white LEDs and because of that, we don’t need a separate circuit for LEDs.

Minimum frequency readout from TCS230 for green color.

Maximum frequency readout from TCS230 for green color.

Due to the small number of components this circuit is quite easy to assemble. To build our prototype we used 46mm × 36mm breadboard. Connections to the TCS230 sensor module is made using a couple of jumper wires.

Before connecting this circuit with PC or host device make sure to configure the HC-05 Bluetooth module with proper name and with a baud rate of 9600. To configure this module, we used HC-06 configuration utility which we developed a couple of months back. Also, make sure to configure “config.py” file with correct COM port name.

At the testing stages, we find out that the TCS230 sensor is not as accurate as we thought. It identifies colors but its results are not accurate enough to meet with our original project requirements. We got a quite satisfactory result when we attached a CCTV camera (filter) lens to this sensor but still, it is not accurate enough for our application.

Sample output captured from the sensor.

The firmware, schematic and Python monitoring script of this project are available at https://github.com/dilshan/tcs230-color-picker. To build PIC16F628A firmware use MPLAB IDE with XC8 C compiler.

Comments

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist...

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner f...

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M...