Skip to main content

Multichannel logic probe and pulsar

This is 8 channel CMOS logic probe and pulsar which is useful when designing, testing and faultfinding in digital circuits. This circuit is designed using commonly available CMOS logic ICs which including a couple of 4069 hex inverters and 4040 binary counter.

A prototype version of 8 channel logic probe and pulsar

The logic probe of this system is based on 4069 hex inverters and it indicates logic high and low states with 2 LEDs. Logic pulsar of this circuit is capable to generate 12 frequencies and highest frequency it can generate is 420kHz.  This pulsar generates a square wave with 50% duty cycle and it's average rise time is 16µS.

Both schematic and PCB design of this logic probe and pulsar are available to download at google drive. In this schematic, all LED-L connections should connect to the anode of LEDs and cathode should be connected to the VSS terminal of J31 (LED-L-H) connector. All LED-H connections should connect to the cathode of LEDs and anode must be connected to VDD terminal of J31 (LED-L-H) connector.

In schematic LIN1 to LIN8 are logic probe inputs. All FREQ-CON-1 and  FREQ-CON-2 connections should be connected to input terminals of the rotary switch and common terminal of the rotary switch should be connected to FREQ-CON-3 terminal. For the rotary switch, we recommended to use single pole 12 position rotary switch.

Internal view of the prototype.

In our prototype, we use 3mm colored LEDs to indicate logic states and pulsar output. For the logic Low level, we use 3mm yellow LEDs and for the high level, we use 3mm green LEDs. To indicate pulsar output we use 3mm red LED. To drive the power supply we use 8V - 300mA step down transformer.

Comments

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist...

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner f...

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M...