Skip to main content

Sensor framework for Data Logging

This is a simple sensor kit to drive 8 active or passive sensors and log its data into a remote Android application. This system also has an option to activate an external device(s) based on the specified threshold of sensor data.

This sensor controller is mainly built around the Raspberry Pi Model 3 B+ and PIC16F877A MCU. PIC16F877A MCU is used to interface/select sensors and it's built-in 10bit multi-channel ADC is used to capture the analog signals from sensors.


During the prototype stage following sensors are tested with this system:

  • LM35 precision temperature sensor
  • MQ7 Carbon Monoxide gas sensor
  • Electret Microphone
  • NSL-19M51 LDR
  • HC-SR501 PIR sensor
  • A3144 Hall effect sensor

Apart from the above list this system can use to drive and capture most of the other analog/digital sensor signals such as current sensors, pressure sensors, chemical sensors, humidity sensors, etc.

In this system, Android monitoring application is designed to connect with the sensor platform through a network link (such as using Wi-Fi or mobile data network) and it can also control this sensor platform via this link.

This given version of Raspberry Pi server is designed to handle only one client and it can be easily extended to multiple client support by modifying the communication protocol of Node.js application and Android application. We build this system entirely for demo purposes and we didn't get a chance to extend it to multi-client support.

Android control and monitoring application.

The trigger system of this system is based on MOC3041 optocoupler and BT138 TRIAC. At the prototyping stage, we use this system to drive 5W - 230V incandescent light bulb. Because of the high current rating of BT138, this system can use to drive AC equipment(s) up to 10Amps.

All the schematics and source codes of this project are available to clone at https://github.com/dilshan/android-datalogger.

Comments

Popular posts from this blog

CD2003 - yet another simple FM radio receiver

In the last few days, we are looking for some simple FM radio receiver to integrate into one of our ongoing projects. For that, we try several FM radio receiver ICs including TDA7000, CD2003/TA2003/TA8164, CXA1019, and KA22429. Out of all those chips we select CD2003 (or TA2003/TA8164) based receiver for our project because of its simplicity and outstanding performance. Except to CD2003, Sony CXA1019 also perform well but we drop it because of its higher component count. We design our receiver based on Toshiba TA2003 datasheet and later we try TA8164 and CD2003 with the same circuit. Either CD2003 or TA8164 can directly replace TA2003 IC, and as per our observations, TA8164 gives excellent results out of those 3 chips. A prototype version of CD2003 FM radio receiver The PCB design and schematic which we used in our prototype project are available to download at google drive (including pin-outs of crystal filters and inductors ). Except for CD2003 IC, this receiver consist...

Arduino superheterodyne receiver

In this project, we extend the shortwave superheterodyne receiver we developed a few years ago . Like the previous design, this receiver operates on the traditional superheterodyne principle.  In this upgrade, we enhanced the local oscillator with Si5351 clock generator module and Arduino control circuit. Compared to the old design, this new receiver uses an improved version of an intermediate frequency amplifier with 3 I.F transformers. In this new design, we divide this receiver into several blocks, which include, mixer with a detector, a local oscillator, and an I.F amplifier. The I.F amplifier builds into one PCB. The filter stage, mixer, and detector stages place in another PCB. Prototype version of 455kHz I.F amplifier. In this prototype build, the Si5351 clock generator drives using an Arduino Uno board. With the given sketch, the user can tune and switch the shortwave meter bands using a rotary encoder. The supplied sketch support clock generation from 5205kHz (tuner f...

Calculator for audio output transformers

Audio output transformers are heavily used in a vacuum tube and some (older) transistor base audio power amplifiers, but these days output transformer are quite hard to find and expensive item. For homebrew projects, the best option is to construct those transformers by ourselves and this script helps to calculate winding parameters for those transformers. This " AF output transformer calculator " script is written using Python and it works with most of the commonly available Python interpreters . The script is available to download at google drive under the terms of GNU General Public License version 3.0 . Homebrewed 25k: 4 output transformer Once supplied the input parameters this script provides a winding ratio, the number of turns required for primary and secondary winding and required copper wire gauges for both primary and secondary windings, etc. We construct several AF output transformers based on results of this script, which including transformers for M...